Supplementary Information

Aluminium fluorescence detection with a FRET amplified chemosensor

Maria Arduini,^{*a*} Fulvia Felluga,^{*b*} Fabrizio Mancin,^{*a*} Paola Rossi,^{*b*} Paolo Tecilla,^{*,*b*} Umberto Tonellato^{*,*a*}, and Nicola Valentinuzzi^{*b*}

^aDipartimento di Chimica Organica and Istituto CNR di Tecnologia delle Membrane - Sezione di Padova, Università di Padova, via Marzolo 1, I -35131 Padova, Italy. Fax: +39 0498275239; Tel: +39 0498275269; E-mail: umberto.tonellato@unipd.it

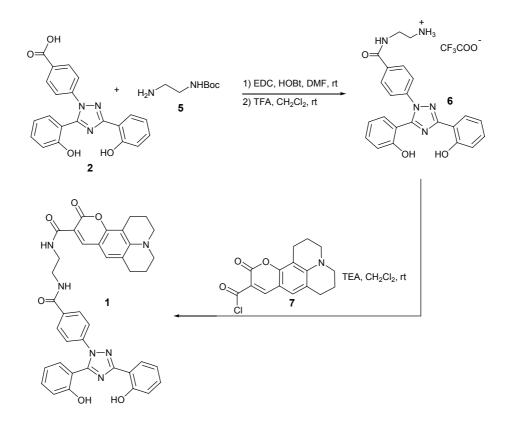
^bDipartimento di Scienze Chimiche, Università di Trieste, via Giorgieri 1, I-34127, Italy. Fax: +39 0405583903; Tel:+39 0405583925; E-mail: tecilla@dsch.univ.trieste.it

(Total 8 pages including this cover page)

Table of Contents

1.	Experimental Procedures	. 2
2.	Synthesis of compounds 1, 3 and 4	. 3
3.	UV-Visible titration of ligand 3 with Al ³⁺ (Figure S1)	. 6
4.	UV-Visible titration of compound 1 with Al ³⁺ (Figure S2)	. 6
5.	UV-Visible spectra of ligand 3 at increasing pH values (Figure S3 and S4)	. 7
6.	Fluorescence emission spectra of sensor 1 and	
	coumarin amide 4 (Figure S5)	. 8
7.	Fluorescence response of compounds 1 to Al^{3+} in the presence	
	of other metal ions (Figure S6)	. 7

1. Experimental Procedures.


General: ¹H NMR spectra were run on a Jeol EX-400 instrument. Chemical shifts are reported relative to internal Me₄Si. Multiplicity is given as usual. ESI-MS spectra were obtained on a PE-API spectrometer at 5600 volts by infusion of methanolic solutions. UV-Vis absorption measurements were performed on a Perkin Elmer Lambda 16 spectrophotometer equipped with a thermostated cell holder. Fluorescence spectra were recorded on a Perkin Elmer LS-50B spectrometer equipped with a thermostated cell holder. TLC's were performed on Polygram[®] Sil G/UV₂₅₄ silica gel pre-coated plastic sheets. Flash chromatography was run on silica gel, 230-400 mesh ASTM (Kieselgel 60, Merck). Solvents were purified under standard techniques. Reagents were purchased by Aldrich and used as received. Al(NO₃)₃, Cu(NO₃)₂, Zn(NO₃)₂, Ni(NO₃)₂, FeCl₃, CaCl₂, MgCl₂ were analytical grade products. Metal ion stock solutions were titrated against EDTA following standard procedures. 4-[3,5-bis-(2-hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid¹ (**2**), N-BOC-1,2-diaminoethane² (**5**) were prepared by known procedures.

Spectrometric titrations: Several 2-mL solutions of buffer $(1 \cdot 10^{-2} \text{ M})$, ligands **1** or **3** $(3.11 \cdot 10^{-6} \text{ M})$ in the case of fluorescence experiments or $0.9 \cdot 1.6 \cdot 10^{-5} \text{ M}$ in the case of the absorption experiments) and the desired amount of metal salt solution in water/ethanol 1:1 were prepared in plastic fluorescence cuvettes and incubated at 25° C for 12 hours. Complex formation was monitored following the absorption spectral changes. UV-Vis or fluorescence spectra were then recorded. From the spectral changes observed upon addition of the substrate, the K_{app} values were obtained by non-linear regression analyses of fluorescence data (at the selected wavelength) versus metal ion concentrations. The buffer used in the experiments was acetate buffer 0.01 M at pH 4.0. After mixing with ethanol the pH value read with the pH-meter was 5.0.

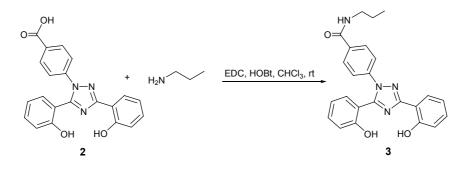
¹R.Lattmann, P.Acklin (Novartis AG), WO-A 9749395A1 1997 [Chem.Abstr. 1998, **128**, 114953e] ²P.Krapcho, C.S.Kuell, *Synth.Commun*. 1990, **20**, 2559-2564.

2. Synthesis

2.1 Synthesis of derivative 1

A CH₂Cl₂ solution of HOBt (0.36g, 2.7 mmol) was added at r.t. to a solution of **2** (4-[3,5-bis-(2-hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid) (1g, 2.7 mmol) in 10 ml anhydrous DMF. After cooling down the solution to 0°C, EDC (0.062g, 3.2 mmol) was added, the mixture stirred for further 10 min at r.t., then a solution of **5** (mono ^tbutyloxycarbonyl-1,2-ethylenediamine) (0.43g, 2.7 mmol) and Et₃N (0.4ml, 3.2 mmol) in 10ml CH₂Cl₂ was added dropwise. The mixture was left on stirring, monitoring the course of the reaction by TLC (CHCl₃:EtOH 15:1). After 18h, the solution was diluted with CH₂Cl₂ (20ml), washed with 5% citric acid (3x) and water (5x). The combined organic layers were dried (Na₂SO₄), the solvent removed *in vacuo*, and the crude material was purified by FC (eluent: toluene-ethyl acetate 7:3) to give the product **6**, 0.260g, yield 19%.

¹H-NMR (400 MHz, MeOD) : δ 1.49 (s, 9H), 3.34 (t, 2H), 3.52 (t, 2H), 6.91 (d, 1H, J=8.0 Hz), 7.06 (m, 3H), 7.44 (m, 2H), 7.56 (dd, 1H, J = 7.7, 1.5 Hz), 7.62, 7.95 (AB quartet, 4H), 8.19 (dd, 1H, J 7.7, 1.5 Hz). ESI-MS calcd for C₂₈H₂₉N₅O₅ (M⁺): 515; obsd: 538 (M⁺ + Na⁺).

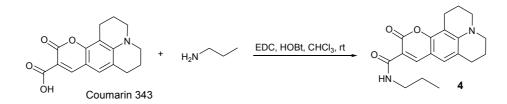

A solution of above Boc-protected derivative, (0.260g, 0.5 mmol) and TFA (10 ml) in CH₂Cl₂ (10ml) was stirred 1h at r.t. Evaporation of the solvent to dryness left a residue (product **6**) which was used without further purification. ¹H-NMR (400 MHz, MeOD), δ : 3.25 (t, 2H), 3.75 (t, 2H), 6.93 (d, 1H J = 8.4 Hz), 7.07 (m, 3H), 7.44 (m, 2H), 7.54 (dd, 1H J=7.3,1.5 Hz), 7.65, 8.00 (AB

quartet, 4H), 8.18 (dd, 1H , J=7.7, 1.5 Hz). ESI-MS calcd for $C_{23}H_{21}N_5O_3$ (M⁺): 415; obsd: 438 (M⁺ + Na⁺).

Oxalylchloride (0.1 ml) and DMF (10 μ l) were added under Ar to a CH₂Cl₂ solution (10 ml) of Coumarin 343 (0.050 g 0.17 mmol). The solution was stirred at r.t. 1h, then the solvent was removed *in vacuo*. The resulting acid chloride 7³ (0.050g, 0.16 mmol), dissolved in 10 ml CH₂Cl₂, was dropwise added to a solution of **6** (0.086 g , 0.16 mmol) and Et₃N (0.075 ml, 0.52 mmol) in the same solvent. After sirring at room temperature 18h, the solution was extracted with H₂O, the organic phase dried and the solvent evaporated *in vacuo*. Purification by flash chromatography (CH₂Cl₂/MeOH 10:1) gave the product **1**, 0.075 g, 67% yield.

¹H-NMR (400 MHz, CDCl₃): δ 1.97 (m, 4H), 2.76 (t, 2H), 2.89 (t, 2H), 3.34 (m, 4H), 3.71 (bt, 2H), 3.76 (bt, 2H), 6.65 (t, 1H), 6.94 (dd, 1H J = 8.0, 1.5 Hz), 7.00 (s, 1H), 7.06 (d, J = 8.0 Hz, 1H), 7.08 (d, J = 8.04 Hz, 1H), 7.14 (d, J = 7.7 Hz, 1H), 7.33 (m, 1H), 7.38 (m, 1H), 7.60, 8.10 (AB quartet, 4H), 8.14 (dd, 1H, J=8.0, 1.8 Hz), 8.38 (bt, 1H), 8.61 (s, 1H), 9.38 (t, 1H), 9.64 (s, 1H), 11.44 (s, 1H). ESI-MS calcd for C₃₉H₃₄N₆O₆ (M⁺): 682; obsd: 705 (M⁺ + Na⁺).

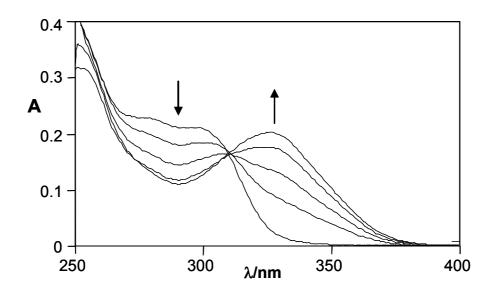
2.2 Synthesis of ligand derivative 3



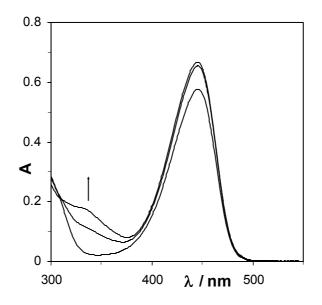
2 (60 mg, 0.16 mmol) was suspended in 4 ml of CHCl₃, triethylamine (0.10 mL, 0.72 mmol) and hydroxybenzotriazole (58 mg, 0.43 mmol) were added and the reaction mixture was cooled to 0° C. Then EDC·HCl (80 mg, 0.42 mmol) was added and, after 10 minutes, *n*-propylamine (0.020 mL, 0.47 mmol). The reaction mixture was stirred at 0° C for 1 hour and at room temperature overnight. After this time, 100 mL of CH₂Cl₂ were added and the mixture was extracted with a 5% KHSO₄ solution (2x), a 5% NaHCO₃ solution (2x) and water (2x). The organic phase was dried (NaSO₄) and the solvent removed to yield 62 mg (94%) of **3** as a white solid.

¹H NMR (CDCl₃) δ : 1.03 (t, J = 7.2 Hz, 3H), 1.68 (m, 2 H), 3.47 (t, J = 6.3 Hz, 2H), 6.2 (bs, 1H), 6.6 (t, J = 7.0 Hz, 1H), 7.4-6.9 (m, 6H), 7.60 (d, J = 8.1 Hz, 2H), 7.96 (d, J = 8.1 Hz, 2H), 8.16 (d, J = 7.0 Hz, 1H). ESI-MS calcd for C₂₄H₂₂N₄O₃ (M⁺): 414; obsd: 437 (M⁺ + Na⁺).

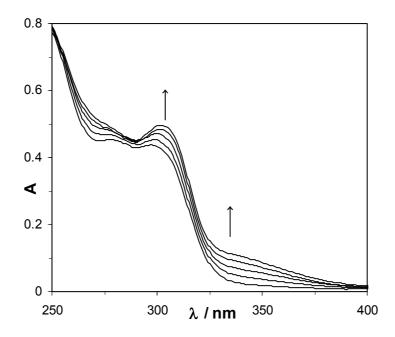
³ J Gompel, G.Schuster, J.Org.Chem. 1987, **52**, 1465-1468.


2.2 Synthesis of coumarine derivative 4

Coumarin 343 (30 mg, 0.11 mmol), triethylamine (0.70 mL, 0.49 mmol) and hydroxybenzotriazole (43 mg, 0.32 mmol) were dissolved in 2 ml of CHCl₃ and the reaction mixture was cooled to 0° C. Then EDC·HCl (64 mg, 0.32 mmol) was added and, after 10 minutes, *n*-propylamine (0.014 mL, 0.32 mmol). The reaction mixture was stirred at 0° C for 1 hour and at room temperature overnight. After this time, 100 mL of CH₂Cl₂ were added and the mixture was extracted with a 5% KHSO₄ solution (2x), a 5% NaHCO₃ solution (2x) and water (2x). The organic phase was dried (Na₂SO₄) and the solvent removed. The crude product was purified by flash column chromatography (silica gel, CH₂Cl₂/CH₃OH 20:1) to yield 35 mg (97%) of **4** as a white solid.


¹H NMR (CDCl₃) δ : 0.97 (t, J = 7.5 Hz, 3H), 1.62 (m, 2 H), 1.96 (m, 4H), 2.76 (t, J = 6.3 Hz, 2H), 2.87 (t, J = 6.5 Hz, 2H), 3.3-3.4 (m, 6H), 7.03 (s, 1H), 8.64 (s, 1H), 9.04 (bs, 1H). ESI-MS calcd for C₁₉H₂₂N₂O₃ (M⁺): 326; obsd: 349 (M⁺ + Na⁺).

3. UV-Visible titration of ligand **3** with Al³⁺


Figure S1: UV-Visible spectra of ligand **3** in the presence of increasing amounts of Al(NO₃)₃ in EtOH/H₂O (1/1) at pH= 5.0. [**3**]= 8.7×10^{-6} M, [acetate buffer] = 0.01M.

4. UV-Visible titration of compound 1 with Al³⁺

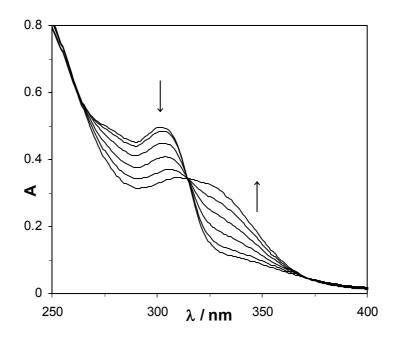
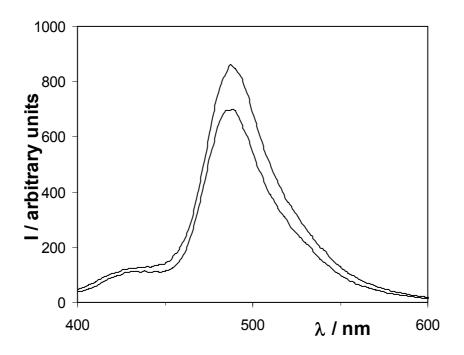


Figure S2: UV-Visible spectra of compound 1 in the presence of increasing amounts of Al(NO₃)₃ in EtOH/H₂O (1/1) at pH= 5.0. [1]= 1.65×10^{-5} M, [acetate buffer] = 0.01M.


5. UV-Visible spectra of ligand 3 at increasing pH values

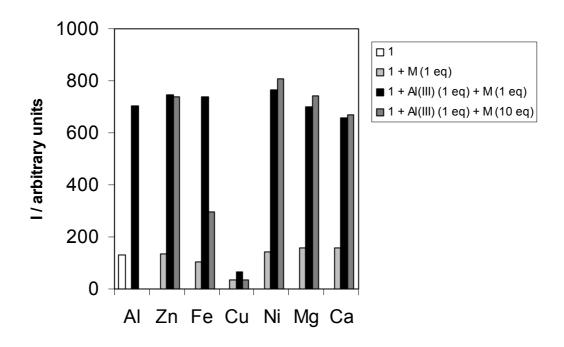

Figure S3: UV-Visible spectra of ligand **3** ($1.74 \cdot 10^{-5}$ M) at increasing pH values in the range 7-12 in EtOH/H₂O 1:1.

Figure S4: UV-Visible spectra of ligand **3** ($1.74 \cdot 10^{-5}$ M) at increasing pH values in the range 12-13.9 in EtOH/H₂O 1:1.

Figure S5: Fluorescence emission spectra (λ_{exc} = 445 nm) of sensor 1 (upper curve) and coumarin derivative 4 (lower curve) in ethanol. [1] = [4] = 3.11 \cdot 10^{-6} M.

Figure S6: Fluorescence response of chemosensor **1** to Al^{3+} in the presence of other metal ions. Conditions: EtOH/H₂O (1/1), pH= 5.0. [**1**]= $3.0x10^{-6}$ M, [acetate buffer] = 0.01M.